
DiffImpact: Differentiable Rendering and
Identification of Impact Sounds

Samuel Clarke Negin Heravi Mark Rau Ruohan Gao
Jiajun Wu Doug James Jeannette Bohg

Stanford University
{spclarke, nheravi, mrau, rhgao, jiajunw, djames, bohg}@stanford.edu

Abstract: Rigid objects make distinctive sounds during manipulation. These
sounds are a function of object features, such as shape and material, and of contact
forces during manipulation. Being able to infer from sound an object’s acoustic
properties, how it is being manipulated, and what events it is participating in could
augment and complement what robots can perceive from vision, especially in case
of occlusion, low visual resolution, poor lighting, or blurred focus. Annotations
on sound data are rare. Therefore, existing inference systems mostly include a
sound renderer in the loop, and use analysis-by-synthesis to optimize for object
acoustic properties. Optimizing parameters with respect to a non-differentiable
renderer is slow and hard to scale to complex scenes. We present DiffImpact, a
fully differentiable model for sounds rigid objects make during impacts, based
on physical principles of impact forces, rigid object vibration, and other acoustic
effects. Its differentiability enables gradient-based, efficient joint inference of
acoustic properties of the objects and characteristics and timings of each individual
impact. DiffImpact can also be plugged in as the decoder of an autoencoder,
and trained end-to-end on real audio data, so that the encoder can learn to solve
the inverse problem in a self-supervised way. Experiments demonstrate that
our model’s physics-based inductive biases make it more resource efficient
and expressive than state-of-the-art pure learning-based alternatives, on both
forward rendering of impact sounds and inverse tasks such as acoustic property
inference and blind source separation of impact sounds. Code and videos are at
https://sites.google.com/view/diffimpact.

Keywords: Differentiable Sound Rendering, Auditory Scene Analysis

1 Introduction
The sound we perceive during rigid object contact is a function of many factors, including noise in
the environment, position of the listener, reflecting surfaces in the surrounding environment, etc. The
most defining of these factors are the vibrations the object makes, a product of its intrinsic acoustic
properties and the way it was contacted. Extracting information about the acoustic properties of
an object could inform a robot about the object’s size, shape, material, and where and how it was
struck. Extracting information about the way the object was contacted could inform a robot of the
velocity, mass, shape, and hardness of the tool that was used to strike the object. Therefore, the ability
to interpret impact sounds could augment and complement what robots can perceive from vision,
especially in cases of occlusion, low visual resolution, poor lighting, or blurred focus.

Decomposing the sound an object makes into the contact forces that excited it and the idealized
acoustic impulse response is generally an ill-posed problem. As annotations on sound data are rare,
existing inference systems mostly include a sound renderer in the loop, and use analysis-by-synthesis
to optimize for object acoustic properties. Optimizing parameters with respect to a non-differentiable
renderer is slow and hard to scale to complex scenes. We propose DiffImpact, a fully differentiable,
generative sound model that uses physics-based priors as a bias. Specifically, we introduce fully dif-
ferentiable models of the object’s impulse response and the contact force during impact. We combine
these with differentiable models of environment acoustics such as ambient noise and reverberation
into a fully differentiable generative sound model. With this physics-based model, we can now infer
physically interpretable parameters of rigid body impact sounds through analysis-by-synthesis, even

5th Conference on Robot Learning (CoRL 2021), London, UK.

https://sites.google.com/view/diffimpact

from real-world recordings, including from real YouTube videos or from a noisy and reverberant
robotics lab.

Impacts in the real world are not always clean impulses, nor do they occur in controlled acoustic
environments. We show how DiffImpact’s differentiability allows us to learn meaningful sound
models that are fit to the sounds of multiple imperfect impact sounds over one or multiple recordings.
We first validate our approach on single impact sounds. We show that our model can fit interpretable
physical parameters of an object’s sound model and of the contact forces to audio recordings. We then
show how DiffImpact enables a robot to passively learn object sound models from a real-world dataset
(ASMR YouTube videos [1]). Our model not only extracts physically interpretable parameters, but
also outperforms model-based and model-free learning baselines in rendering realistic impact sounds
for held-out data. Finally, we show how a robot can learn object sound models from data it collected
by striking these objects with a tool. Specifically, we show how the robot can perform blind source
separation of the collected sound and thereby achieves 140% higher accuracy on classifying the
material of the objects it strikes.

2 Related Work
Audio-frequency vibrations have been shown to be an effective modality for robots to ascertain
characteristics of physical events in their environment, including instance level classification of
everyday objects [2, 3] and estimates of their motion [4], terrain classification by legged robots [5],
masses of granular materials being poured from a scoop the robot is holding [6], and amounts of
liquid poured by a robot [7]. Auditory scene analysis also has applications for dynamic inference of
stochastic events, enabling creation of audio based reactive robotic trackers [8].

Many of these works have a common characteristic with more recent visual perception approaches,
that learning-based neural methods are subsuming many classical approaches by enabling automatic
feature extraction rather than requiring hand engineered features [9, 10]. However, whereas
differentiable image renderers have empowered new approaches in visual perception [11, 12, 13, 14],
differentiable audio renderers have been introduced only recently. Engel et al. [15] recently debuted
the Differential Digital Signal Processing (DDSP) library, showing applications in the musical
domain on tasks such as disentangling the pitch and timbre of instrument sounds. Rather than the
musical domain, we focus on modeling modal impact sounds of rigid objects, and show applications
of our physics-based model for robotics tasks.

Model-free neural audio representation methods are powerful in synthesizing realistic human
speech [16, 17] but lack interpretability and flexibility for transfer to different categories such as
transient environment sounds. Model-based methods often require less data and training time to
produce interpretable learned parameters, which can be reused and applied to other tasks more
intuitively. They are also capable of synthesizing realistic object sounds [18, 19, 20] but depend on
hand-engineered analytical methods for parameter estimation with structured audio samples. Ren
et al. [21] use real audio clips of striking objects to infer properties such as Young’s modulus and the
modes of the object, then attempt to reproduce the sound based on a modal model with a residual.
However, they assume knowledge of the 3D geometry of the object as well as impact location. Zhang
et al. [22] infer object properties such as Young’s modulus and Rayleigh damping from sounds of
objects falling on a surface by using a physics-based modal sound generation engine with a black
box forward model. But their model is not fully differentiable, making it challenging to learn from
unconstrained in-the-wild audio or to optimize over many dimensions at once. While we use a
model conceptually similar to that of [23, 22], our fully differentiable structure empowers learning
a best estimate of an object’s modal model from the sound of multiple uncontrolled, imperfect,
heterogeneous impacts, rather than requiring strictly controlled recordings for analysis.

3 Differentiable Rendering of Impact Sounds
Our DiffImpact models the sound that a rigid object makes when struck in a real environment as a
function of 1) the impact force’s magnitude over time; 2) the brief click of a sound pressure wave
caused by the rapid deceleration of the striking object, referred to as the “acceleration sound”; 3) the
struck and striking objects’ impulse responses, or their idealized theoretical vibrational response to a
perfect unit impulse; 4) any environment, background, or recording noise; and finally 5) the impulse
response of the local environment, reflecting and transmitting reverberations of any sound being
directly emitted by the object. DiffImpact attempts to decompose real impact sounds into each of
these contributions, using physics-based models in order to regularize this decomposition.

2

Figure 1: Overview of proposed approach, DiffImpact. Blue elements are only used for the end-to-end learning
task, yellow elements are only used in source separation, and green elements are used in both. Dashed components
are only used during training, and elements with a red outline have learnable parameters.

3.1 Overview

Figure 1 provides a high-level overview of our approach. There are some model variations dependent
on which inference task we are considering. For clarity, here we will give a brief overview of the model
when used for the end-to-end learning task of predicting an audio waveform from a magnitude spectro-
gram of the ground truth audio sample, similar to the models in [15, 24, 16]. The magnitude spectro-
gram lacks phase information and is therefore not directly invertible to an audio waveform. This spec-
trogram is input to an encoder network that outputs a coarsely temporally discretized time series of pa-
rameters that represent impact characteristics. These parameters are the input to the Impact Force Pro-
file Generator that synthesizes an impact force profile as described in more detail in Section 3.2. Given
object-specific, learnable parameters of a modal model of rigid body impact sound, the Modal Impulse
Response Generator synthesizes an impulse response as described in more detail in Section 3.3. This
impulse response is convolved with the force profile to synthesize object vibrations. To model the
contribution of the sound pressure wave caused by the rapid deceleration of the impacting object, this
impact force profile is also multiplied by a learnable scalar and added to the object vibration sounds.

We theoretically now have all the sounds emitted directly from the point of impact on the object.
To model sound that is specific to the environment, we introduce a noise and reverb generator as
detailed in Section 3.4. Given learnable noise parameters, the Filtered Noise Generator synthesizes
recording or background noise that is then added to the current audio. Finally, given learnable
reverb parameters, the Reverb Generator synthesizes an impulse response of the environment. This
response is then convolved with the current audio to model the sounds that have transmitted through
the environment and reflected off nearby surfaces, rather than directly from the object. This result is
added to the current audio to produce the final waveform.

For training the aforementioned learnable parameters of the generators and the encoder, we use a loss
that compares spectrograms of the generated waveform with those of the ground truth (Section 3.5).

The final waveform Ŵ (t) produced by our model can be expressed as

Ŵ (t)=[F (t;m,t,τ)~[α+IRo(tIR;f ,go,do)]+N(t;gn)]~(1+IRe(tIR;ge,de)), (1)

where t is the time in the final waveform;F is the force profile function that takes as input the impulse
magnitudes m, impulse timings t, and contact time scales τ ; ~ denotes a convolution; α is a scalar
for the acceleration sound; IRo is the modal object impulse response function parameterized by
modal frequencies f , gains go, and dampings do, and tIR is time within each impulse response; N
is the filtered noise parameterized by frequency band gains gn; and IRe is the impulse response of
the environment parameterized by frequency band gains ge and dampings de. We will now detail
the equations and physics-based models for each of these components we propose, and how we scale
a low dimensional set of normalized parameters into input parameters for each of these functions,
producing an audio frequency signal in a differentiable manner.

3

3.2 Differentiable impact force profile and acceleration sound

To model the force profiles of multiple impact events occurring over the time interval of an audio clip,
our proposed module converts the two time series outputs from the encoder into a contact force profile
at audio frequency. This profile is defined by the time scales τ and magnitudes m of the impulses.

First, we define a physical model for each impulse event. Since objects will generally have convex
curvature at the points at which they strike, they can be locally approximated as spheres in contact.
Therefore, we adopt a Hertz half-sine contact model based on collisions between frictionless rigid
spheres similar to that of [25]. To ensure smoothness, we use a Gaussian approximation Ci(t;ti,τi)
of this contact model force impulse profile [26, 27]:

Ci(t;ti,τi)=exp

(
− 6

τ2i

(
t−ti−

τi
2

)2)
, (2)

where ti represents the timing of the onset of the unsmoothed impact, and τi is the time scale of the
contact force, which depends on the velocity of the impact and material properties of the object [28].
Sharper and faster contact points as well as harder materials will each contribute to reducing the value
of τi, while softer, slower, and duller contact points will have higher τi values.

Equation 2 provides a model for an individual contact event. But in a natural audio clip, multiple
such contact events, each with different characteristics, can occur over a given interval, such that a
natural force profile over time will be the sum of multiple such contact impulses, each with different
parameters and magnitudes, and each occurring at different instants during the interval. We model
the force profile, the scalar value of the normal force over time, for multiple contacts as a weighted
sum of such Gaussian impulses from Equation 2:

F (t;m,t,τ)=mTC(t;t,τ), (3)

where t= [t0,...,tM]T , τ = [τ0,...,τM]T and m= [m0,...,mM]T . Each magnitude mi serves as the
weight for the corresponding impact. C(t;t,τ) stacks the output of Equation 2 into a vector.

Equation 2 is naturally differentiable, but a challenge to making Equation 3 fully differentiable is that
the number of impacts occurring during an interval may not be be known a priori, and may vary be-
tween examples. To address this, we propose an algorithm that findsM peaks in a time series of impact
magnitude estimates over time, and places model-based impulses at those peaks based on the param-
eters at each peak’s point in the time series. If there are fewer than M peaks, the impact magnitudes
mi at the extraneous peaks should be estimated as zero. We detail this algorithm in Appendix A.1.

To model the acceleration sound, we must know the acceleration profile of the striking tool’s tip.
Since the striking tool’s mass is fixed, then the deceleration is proportional to the impulse force,
which is already estimated in Equation 3. Therefore, we model the contribution of the acceleration
sound as the force profile from Equation 3 multiplied by the learnable scalar variable α.

3.3 Object impulse response

For the object impulse response, we adopt a modal model by modeling objects as spring-damper
systems, where the impulse response is a linear combination of exponentially decaying sinusoids,
with each sinusoid having a different frequency fk, gain gk, and damping dk [18, 23]. We model
the K most salient modes of the object through constructing a finite impulse response (FIR)
as IRo(t; f , go,do) = go

T [exp(−dot)◦sin(2πf t)], where f = [f0, ... , fK], go = [g0, ... , gK],
do=[d0,...,dK] and ◦ is the Hadamard product. Note that we make the simplifying assumption that
the gains of each object are fixed across the entire body of the object, whereas in reality for general
objects, they vary significantly depending on the location at which the object is impacted. We made
this assumption to make the optimizations in our experiments more tractable since the inputs to our
frameworks were blind to the 3D models of the objects as well as the locations of each contact. We
detail how we scale normalized inputs to our module to produce the parameters in Appendix A.2.

3.4 Environment noise and reverberation

We approximate background and measurement noise as static filtered noise, whereas we approximate
reverberation from the measurement environment with exponentially decaying filtered noise. For
background and measurement noise, our filtered noise function N(t;gn) filters random white noise
with time-constant gains for each frequency band given by learnable noise parameters: N(t;gn) =
gn

T filt(N (t),Bn), where filt(N (t),Bn)∈RBn×T is a function that filters white noiseN (t) with

4

Figure 2: Comparing our model’s estimates to ground truth time series of normalized contact forces and spec-
trograms, for our analysis by synthesis task on short recordings. Results are from the steel bowl.

Bn band pass filters spaced linearly over the interval of frequencies to the Nyquist frequency. The
output matrix is multiplied with the vector gn weighting each frequency band.

For generating reverberations, we model the local environment’s response to sounds with an impulse
response with exponentially decaying filtered noise, where each noise band has its own decay rate,
similar to [23]: IRe(tIR;ge,de) = ge

T [exp(−det)◦filt(N (t),Be)]. Here ge and de are the gains
and damping factors per frequency band, respectively, and have dimensionBe. We describe how these
parameters are derived from scaling our learnable normalized reverb parameters in Appendix A.3.

3.5 Loss function

As a loss function for all tasks, we use the sum of the L1 distance between the spectrograms and log
spectrograms of multiple window sizes from the ground truthW and synthesized audio Ŵ [15, 24]:

L(W,Ŵ)=
∑

sw∈{128,...,2048}

λ1|S(W,sw,βsw)−S(Ŵ ,sw,βsw)|+λ2|log(S(W,sw,βsw))−log(S(Ŵ ,sw,βsw))|,

where sw is the window size, β is the overlap ratio, λ1 and λ2 are weights, and S is the short-term
Fourier transform (STFT) or spectrogram. Using multiple spectrogram scales ensures that the loss
characterizes an error signal in both high frequency and temporal resolution. The log spectrograms
also ensure that higher frequency components, which tend to have lower energy magnitude than low
frequency components, are also weighted more strongly. We simultaneously fit estimates of param-
eters for both the sound the object makes when impacted, and the impacts that produce those sounds.

4 Results
We first validate that DiffImpact is able to not only learn expressive sound models, but also to extract
accurate physically interpretable parameters from controlled recordings of impacting different house-
hold objects. Then we show how our contributed modules can be used in two different real-world tasks,
one showing how a robot could use our models to passively learn sound models from data, and another
showing how our robot can interactively learn sound models and use them for useful downstream tasks.

4.1 Analysis by synthesis: Fitting to single real impact sounds

To test whether our DiffImpact can extract contact forces from sound, we collected 3-second clips
of striking four different household objects (bottom right of Figure 4) in a recording studio with
an impact hammer (PCB 086C01). The impact hammer had a force transducer in its tip, providing
ground truth contact forces synchronized with the audio recorded by a microphone (PCB 378A06).
We randomly initialized the parameters for our model, and fit them to each recording with respect to
our loss function which only compares synthesized and ground truth spectrograms. We use Adam as
the optimizer [29]. Our results are shown in Figure 2. Though our model’s estimates of contact force
have no sense of scale or calibration to a physical quantity (see Appendix E), we show that the force
profiles our model synthesized were quite similar in shape to those of the ground truth. Note that
we do not supervise directly on force profiles. Furthermore, the spectrograms demonstrate that our
model is able to synthesize audio very similar to the ground truth. Audio examples are included in the
Supplementary Materials, and further details of this experiment and its setup are in Appendix B.

4.2 End to end learning: Learning rigid body impact sound models from in-the-wild audio

We demonstrate the utility of our modules in the end to end learning task of autoencoding real
world impact audio. Similar to previous work [16, 15], the input to each model is the ground truth
magnitude spectrogram, and the output is the wave form of the audio. Our experiments in this section
are driven by evaluating perceptual realism and similarity of our model’s predictions, measured both
qualitatively by human user studies and quantitatively by perceptual loss metrics.
Dataset We curated a dataset of audio clips extracted from videos on the ASMR Bakery YouTube
Channel [1]. We selected clips from segments in which the creator is repeatedly tapping five objects

5

Figure 3: Results from end-to-end learning task evaluations on ASMR dataset. (Left) Human study ratings of
realism of different ASMR objects’ generated audio from test set. (Right) Average computational audio distance
metrics of test set output from different models.

of different materials: a wooden box, a glass bowl, a silicone pad, a steel bar, and a ceramic plate.
Screenshots from clips of each of the objects we selected are shown Appendix C.1. With this dataset,
we show that a robot could use our framework to learn meaningful, physically interpretable models
of rigid objects from a rich real world dataset. This dataset presents many challenges to the task of
estimating a modal sound model, challenges which prior works have not addressed. First, whereas
other works record the sound of a single controlled impact by a small pellet or specialized instru-
ment [23, 18], many clips in our dataset include impacts randomly alternating between tapping with
hard fingernails and soft fingertips within short timespans. Some of these objects are being held in the
creator’s hand while they are being tapped, and other objects are lying on a table (see Appendix C.1).
Holding each object or resting it on a surface will dampen certain modes of vibration. Therefore,
at no point in the entire dataset does an object emit an ideal undamped modal response. The ASMR
dataset consists of around 3-5 minutes of continuously recorded audio of tapping for each object. We
validated our model and its hyperparameters on a held out validation set of the steel bar clips, then split
remaining data for each object in approximately a 90-10 train-test split. Thus, each model had 200
seconds of training data for each object, and at least 20 seconds of unseen audio samples per object.

Baselines We implemented two baseline models based on DDSP [15, 24], which we refer to as
“DDSP Serra” and “DDSP Sin.” DDSP Serra is based on a time-varying harmonic model developed
for musical instruments [30]. To test the influence of the harmonic model bias, DDSP Sin replaces
the harmonic oscillator with an unrestricted time-varying sinusoidal oscillator. We also tested
WaveGlow [16], a state of the art model-free approach for generating human speech. Further details
on baselines are in Appendix C.2. The WaveGlow baseline took more than two orders of magnitude
more GPU time to train (∼1 hour vs. ∼ 300 hours of training time for a single object on an Nvidia
Quadro P5000 GPU). To demonstrate the necessity of this training time, we report results from
training this model for only∼1 order of magnitude more than the other models in Appendix C.4. For
our evaluations, we trained a separate instance of each baseline and our model per object.

Qualitative evaluation through human studies To test DiffImpact’s capability of producing real-
istic impact sounds on held-out audio samples of each object compared to baselines, we re-dubbed the
original videos with each model’s output given the video’s original audio as input. We then presented
participants on Amazon Mechanical Turk with a two-alternative forced choice to pick the best match-
ing audio for 5-second videos. The comparisons were between our model and either the baselines or
ground truth (1200 questions total). Our model significantly outperforms all the baselines on average
(p<0.05), as shown on the left of Figure 3. Per object category, DiffImpact outperforms all baselines
for the steel bar and ceramic plate. It outperforms DDSP Serra and DDSP Sin models for all objects
except for the silicone pad (p<0.05). We suspect our model struggles with modeling the impact sound
of the silicone pad due to the damping effect and roughness of the material as well as its high deforma-
bility that violates our model’s rigid body assumption. The other models without these biases may
better model its sound. Furthermore, the user’s hand sometimes rubs against the surface during con-
sequent tapping, resulting in unmodeled components in the audio which affect the performance of our
method. On average, our participants chose our model’s audio over ground truth 42.9% of the time,
suggesting that our generated audio is often realistic enough to be confused with ground truth audio.

Quantitative evaluation using distance metrics We also compared each model’s test outputs with
the ground truth audio using different computational distance metrics, including CDPAM, a learning-
based perceptual distance metric designed for human speech applications [31], the multi-scale spec-
trogram loss used in [15, 24], and the envelope distance used in [32]. Since each of these metrics have

6

Figure 4: Physical setup and tools for robotic impact dataset collection. (Left) A Franka Panda holds and rotates
a ceramic chopstick to swing at the wood napkin holder, with audio recorded by the bottom-left microphone.
(Middle) Close up of a fork swung at a mug, with microphone at left. Objects were rested on a soft foam pad
to prevent sliding and mitigate contact damping and acoustic reflection from the hard tabletop. (Right top) The
tools used for striking (from top): wooden spoon, polycarbonate spoon, ceramic chopstick, and steel fork. (Right
bottom) The struck objects (from left): steel bowl, wood napkin holder, ceramic mug, and polycarbonate cup.

widely different scales, we normalized each model’s average distance on each metric by the average
distance of white noise with respect to that metric. The results are shown on the right of Figure 3. These
results align with our human studies, suggesting that our DiffImpact outperforms DDSP Serra and Sin,
and it performs on par with WaveGlow, yet requires two orders of magnitude less training time.

Discussion We demonstrate that DiffImpact is expressive enough to characterize and generate real
world impact sounds, with performance competitive or better than state of the art alternatives. But
perhaps most importantly, while completing this end-to-end learning task, our model is forced to
extract physically interpretable and transferable parameters of impact forces and acoustic properties
of the object and environment, whereas the parameters learned by other models are either uninter-
pretable (in the case of WaveGlow), or not directly meaningful to extracting impact event and intrinsic
acoustic properties of objects. These parameters can be used with a novel impact profile to render
the sound the object would make when impacted as such, creating a multimodal object model for
simulation environments [33, 34] merely from information learned from in-the-wild YouTube videos.

4.3 Robotic task: Source separation of kitchen utensil sounds

We use DiffImpact to perform a source separation task. Unlike traditional audio source separation,
where the goal is to isolate sounds in passive, pre-recorded audios and videos [35, 36, 37], our goal is
to enable robots to actively interact with objects in the environment and separate the sounds they make.
Consider the scenario where the robot strikes an object with a tool. The perceived sound of the impact
will be a combination of the sounds the tool makes and the sounds the struck object makes. We show
that by separating them, a robot can more accurately classify object materials, as different materials
have distinct acoustic properties. Knowing the material of an object can inform the robot about its
durability, surface friction, and category, all key factors to consider when planning grasps and actions.

Dataset We collected a dataset of a robot swinging four household tools (“tools”) at each of four
household objects (“objects”) of four different materials, with each distinct material represented in
exactly one element of each category. We recorded each impact with a Shure SM57 microphone.
Photos of the robotic setup and the tools and objects are shown in Figure 4. We filtered out any
samples where the recording was too loud and clipped, which would obfuscate the frequency content,
then used the two loudest remaining recordings of each pairwise interaction for our experiments, to
ensure a high signal to noise ratio.

Optimization setup We used the yellow elements of the model shown in Figure 1. Compared to
the description in Section 3, we modified the model as follows: 1) instead of using the neural encoder
to control impact force, the impact force profile for each instance was a single impulse parameterized
by the Impulse trainable parameters, and 2) the Tool parameters were also used to produce a modal
impulse response which was convolved with the force profile along with the Object modal impulse
response. The parameters for each tool and each object were optimized with respect to each of the
recordings for which they were present. All recordings shared the same set of Noise parameters, with
each having a single gain scalar for the noise. We then performed analysis by synthesis on the entire
batch of 32 recordings at once, optimizing all of our trainable variables with the Adam optimizer with
respect to the loss that only compares ground truth with generated spectrograms of the non-separated

7

sound. For producing the separated object sound, we turned off the background noise, reverberation,
acceleration sound, and the tool impulse response, then generated the model output for each recording.
For producing the separated tool sound, we turned off the background noise and the object impulse
response, then generated the model output for each recording. See Appendix D for more details.
Baselines We compared with non-negative matrix factorization (NMF) clustering [38] and the
more recent “Deep Audio Prior” (DAP) [39] networks. Similar to our framework, both baselines
require no pre-training. Note that these baselines do not have a built-in way of specifying which
separated source corresponds to the tool and which to the object, whereas ours does.
Metrics We provide qualitative examples of the separated sources in our Supplementary Materials.
Ground truth separated object sounds are not available to compare our results against, as there is no
realistic way to even collect them in the real world. Thus, for a quantitative comparison, we compare
the performance of material classification on each framework’s outputs. Specifically, we train an
audio-based material classifier on balanced data of only the relevant materials from the Sound-20K
dataset, which consists of only synthetic sounds of objects of different materials bouncing on surfaces
in a virtual environment [40]. We tested this trained classifier on the original sound as well as
the source-separated output of each framework, to test whether the separated audio can be more
accurately classified by this trained material classifier.

Table 1: Classifying materials from source-separated audio.

Object Material Acc. (%) Tool Material Acc. (%)

Model Dataset Max Inst. Max Dataset Max Inst. Max

Raw audio 37.5 37.5 12.5 12.5
NMF [38] 40.6 43.8 21.9 21.9
DAP [39] 50.0 68.8 28.1 50.0
DiffImpact (ours) 90.6 96.9 43.8 53.1

Results We report results in Table 1.
Because our baselines have no con-
straint on which separated source is
the tool and which is the object, we
show the results of two evaluation
schemes. Under the “Dataset Max”
scheme, we compute the object mate-
rial accuracy twice for each baseline:
first treating their first output as the
object, then treating the second as the object. We use the higher between the two as their result.
We do the same for tools. Under the “Inst. Max” scheme, we take the maximum for each instance
instead of across the whole dataset. While both schemes offer the baselines an advantage, our DiffIm-
pact still outperformed them, while also explicitly differentiating between the object and the tool. All
models, including ours, performed better for classifying objects than tools. Object sounds dominated
the recordings over tool sounds, since they were much larger, with more surface area for dispersing
vibrations. Their size also gave them stronger low frequency modes with lower dampings, lasting
longer in recordings, and thus easier to capture and characterize. See Appendix D for confusion ma-
trices from this task, as well as results from a similar experiment where our DiffImpact outperforms
the same baselines for estimating Young’s modulus of each object and tool from separated sounds.

5 Conclusion
We have proposed DiffImpact, a fully differentiable physics-based framework for modeling rigid ob-
ject impact sounds. This model enables robots to learn valuable physically interpretable parameters
from sounds of objects in their everyday environments. We first validated that our method success-
fully simulates impact sounds of different everyday objects, and that it can be used in an analysis-by-
synthesis approach to estimate impact forces that generated the analysed sound. We also showed how
our framework can be used as a neural rendering layer, learning physically interpretable parameters
of object sound models during an end-to-end learning task from a real-world dataset. We evaluated
its performance against state of the art audio learning baselines with both a human study and distance
metrics, and found our model to be more expressive and resource efficient than alternatives for mod-
eling real-world impact sounds. Finally, we showed how a robot can use our model to learn sound
models of everyday objects in its environment by striking them in a noisy environment with every-
day tools. The robot used our model to differentiate between the sounds of the tools it used and the
objects it struck with them and could classify the materials of the objects it strikes from sound 140%
more accurately than from the original, unseparated audio or from generic audio source separation
baselines. The knowledge robots can use our model to ascertain about objects, materials, and contact
forces will be valuable to future applications which use our approach in robot decision making and
policy learning. As future work, we aim to expand the scope of our model to other contact events, such
as rubbing and scratching, or other object acoustic events, such as bouncing on different surfaces or
fracturing. We also intend to use our contributions as a foundation for models and applications which
use other multimodal inputs, such as vision and tactile data.

8

Acknowledgments

We thank Christopher Atkeson, Ante Qu, Oliver Kroemer, Jacky Liang, and Leonid Keselman for
valuable discussions, Kevin Zhang, Michael A. Lin, Hojung Choi, Brian Roberts, and Toki Migimatsu
for assistance in setting up robotic experiments, and Matt Wright for assisting with audio recordings.
This work is in part supported by the Toyota Research Institute (TRI), NSF CCRI #2120095, Amazon
Research Award (ARA), Autodesk, IBM, and the Stanford Institute for Human-Centered AI (HAI).
N. Heravi was supported by the NSF Graduate Research Fellowship.

References
[1] Asmr bakery. URL https://www.youtube.com/channel/UCDH70xAv1bBeaCt5Cc7a96A.

[2] J. Sinapov, C. Schenck, K. Staley, V. Sukhoy, and A. Stoytchev. Grounding semantic categories
in behavioral interactions: Experiments with 100 objects. Robotics and Autonomous Systems,
62(5):632–645, 2014. ISSN 0921-8890. doi:https://doi.org/10.1016/j.robot.2012.10.007. URL
https://www.sciencedirect.com/science/article/pii/S092188901200190X. Spe-
cial Issue Semantic Perception, Mapping and Exploration.

[3] J. Sinapov, M. Wiemer, and A. Stoytchev. Interactive learning of the acoustic properties of
household objects. In 2009 IEEE International Conference on Robotics and Automation, ICRA
2009, Kobe, Japan, May 12-17, 2009, pages 2518–2524. IEEE, 2009. doi:10.1109/ROBOT.
2009.5152802. URL https://doi.org/10.1109/ROBOT.2009.5152802.

[4] D. Gandhi, A. Gupta, and L. Pinto. Swoosh! rattle! thump!–actions that sound. arXiv preprint
arXiv:2007.01851, 2020.

[5] J. Christie and N. Kottege. Acoustics based terrain classification for legged robots. In 2016
IEEE International Conference on Robotics and Automation (ICRA), pages 3596–3603, 2016.
doi:10.1109/ICRA.2016.7487543.

[6] S. Clarke, T. Rhodes, C. G. Atkeson, and O. Kroemer. Learning audio feedback for estimating
amount and flow of granular material. Proceedings of Machine Learning Research, 87, 2018.

[7] H. Liang, S. Li, X. Ma, N. Hendrich, T. Gerkmann, F. Sun, and J. Zhang. Making sense of audio
vibration for liquid height estimation in robotic pouring. In IEEE International Conference on
Intelligent Robots and Systems (IROS), 2019.

[8] C. Matl, Y. S. Narang, D. Fox, R. Bajcsy, and F. Ramos. Stressd: Sim-to-real from sound for
stochastic dynamics. CoRR, abs/2011.03136, 2020. URL https://arxiv.org/abs/2011.
03136.

[9] T. N. Sainath and C. Parada. Convolutional neural networks for small-footprint keyword spot-
ting. In Sixteenth Annual Conference of the International Speech Communication Association,
2015.

[10] H. Lee, P. Pham, Y. Largman, and A. Y. Ng. Unsupervised feature learning for audio classifi-
cation using convolutional deep belief networks. In Advances in neural information processing
systems, pages 1096–1104, 2009.

[11] S. Tulsiani, T. Zhou, A. A. Efros, and J. Malik. Multi-view supervision for single-view recon-
struction via differentiable ray consistency, 2017.

[12] G. Pavlakos, L. Zhu, X. Zhou, and K. Daniilidis. Learning to estimate 3d human pose and shape
from a single color image. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 459–468, 2018.

[13] M. Bao, M. Cong, S. Grabli, and R. Fedkiw. High-quality face capture using anatomical muscles.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
10802–10811, 2019.

[14] A. Palazzi, L. Bergamini, S. Calderara, and R. Cucchiara. End-to-end 6-dof object pose es-
timation through differentiable rasterization. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 0–0, 2018.

9

https://www.youtube.com/channel/UCDH70xAv1bBeaCt5Cc7a96A
http://dx.doi.org/https://doi.org/10.1016/j.robot.2012.10.007
https://www.sciencedirect.com/science/article/pii/S092188901200190X
http://dx.doi.org/10.1109/ROBOT.2009.5152802
http://dx.doi.org/10.1109/ROBOT.2009.5152802
https://doi.org/10.1109/ROBOT.2009.5152802
http://dx.doi.org/10.1109/ICRA.2016.7487543
https://arxiv.org/abs/2011.03136
https://arxiv.org/abs/2011.03136

[15] J. Engel, L. Hantrakul, C. Gu, and A. Roberts. Ddsp: Differentiable digital signal processing.
arXiv preprint arXiv:2001.04643, 2020.

[16] R. Prenger, R. Valle, and B. Catanzaro. Waveglow: A flow-based generative network for speech
synthesis. In ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 3617–3621. IEEE, 2019.

[17] A. v. d. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner,
A. Senior, and K. Kavukcuoglu. Wavenet: A generative model for raw audio. arXiv preprint
arXiv:1609.03499, 2016.

[18] D. K. Pai, K. v. d. Doel, D. L. James, J. Lang, J. E. Lloyd, J. L. Richmond, and S. H. Yau. Scanning
physical interaction behavior of 3d objects. In Proceedings of the 28th annual conference on
Computer graphics and interactive techniques, pages 87–96, 2001.

[19] K. Van Den Doel, P. G. Kry, and D. K. Pai. Foleyautomatic: physically-based sound effects for
interactive simulation and animation. In Proceedings of the 28th annual conference on Computer
graphics and interactive techniques, pages 537–544, 2001.

[20] M. Rau, O. Das, and E. Canfield-Dafilou. Improved carillon synthesis. in 22nd Int. Conf. Digital
Audio Effects (DAFx-19), Birmingham, England, Sep. 2–6, 2019.

[21] Z. Ren, H. Yeh, and M. C. Lin. Example-guided physically based modal sound synthesis. ACM
Transactions on Graphics (TOG), 32(1):1–16, 2013.

[22] Z. Zhang, Q. Li, Z. Huang, J. Wu, J. Tenenbaum, and B. Freeman. Shape and material from
sound. In Advances in Neural Information Processing Systems, pages 1278–1288, 2017.

[23] J. Traer, M. Cusimano, and J. H. McDermott. A perceptually inspired generative model of rigid-
body contact sounds. In The 22nd International Conference on Digital Audio Effects (DAFx-19),
2019.

[24] J. Engel, R. Swavely, L. H. Hantrakul, A. Roberts, and C. Hawthorne. Self-supervised pitch
detection by inverse audio synthesis. 2020.

[25] J. N. Chadwick, C. Zheng, and D. L. James. Precomputed acceleration noise for improved
rigid-body sound. ACM Transactions on Graphics (TOG), 31(4):1–9, 2012.

[26] J. Reed. Energy losses due to elastic wave propagation during an elastic impact. Journal of
Physics D: Applied Physics, 18(12):2329, 1985.

[27] D. L. James. Real-time rigid-body dynamics with acceleration noise. http:
//graphics.stanford.edu/courses/cs448z/HW_Sp21/HW1/CS448Z_2021sp_HW1_
RBD_AccelNoise.pdf, 2021.

[28] K. L. Johnson and K. L. Johnson. Contact mechanics. Cambridge university press, 1987.

[29] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[30] X. Serra and J. Smith. Spectral modeling synthesis: A sound analysis/synthesis system based on
a deterministic plus stochastic decomposition. Computer Music Journal, 14(4):12–24, 1990.

[31] P. Manocha, Z. Jin, R. Zhang, and A. Finkelstein. Cdpam: Contrastive learning for perceptual
audio similarity, 2021.

[32] P. Morgado, N. Vasconcelos, T. Langlois, and O. Wang. Self-supervised generation of spatial
audio for 360° video. In NeurIPS, 2018.

[33] C. Gan, J. Schwartz, S. Alter, M. Schrimpf, J. Traer, J. De Freitas, J. Kubilius, A. Bhandwal-
dar, N. Haber, M. Sano, et al. Threedworld: A platform for interactive multi-modal physical
simulation. arXiv preprint arXiv:2007.04954, 2020.

10

http://graphics.stanford.edu/courses/cs448z/HW_Sp21/HW1/CS448Z_2021sp_HW1_RBD_AccelNoise.pdf
http://graphics.stanford.edu/courses/cs448z/HW_Sp21/HW1/CS448Z_2021sp_HW1_RBD_AccelNoise.pdf
http://graphics.stanford.edu/courses/cs448z/HW_Sp21/HW1/CS448Z_2021sp_HW1_RBD_AccelNoise.pdf

[34] Manolis Savva*, Abhishek Kadian*, Oleksandr Maksymets*, Y. Zhao, E. Wijmans, B. Jain,
J. Straub, J. Liu, V. Koltun, J. Malik, D. Parikh, and D. Batra. Habitat: A Platform for Embodied
AI Research. In Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV), 2019.

[35] R. Gao, R. Feris, and K. Grauman. Learning to separate object sounds by watching unlabeled
video. In Proceedings of the European Conference on Computer Vision (ECCV), pages 35–53,
2018.

[36] H. Zhao, C. Gan, A. Rouditchenko, C. Vondrick, J. McDermott, and A. Torralba. The sound of
pixels. In Proceedings of the European conference on computer vision (ECCV), pages 570–586,
2018.

[37] A. Ephrat, I. Mosseri, O. Lang, T. Dekel, K. Wilson, A. Hassidim, W. T. Freeman, and M. Ru-
binstein. Looking to listen at the cocktail party: A speaker-independent audio-visual model for
speech separation. arXiv preprint arXiv:1804.03619, 2018.

[38] M. Spiertz and V. Gnann. Source-filter based clustering for monaural blind source separation.
In Proceedings of the 12th International Conference on Digital Audio Effects, volume 4, 2009.

[39] Y. Tian, C. Xu, and D. Li. Deep audio prior. arXiv preprint arXiv:1912.10292, 2019.

[40] Z. Zhang, J. Wu, Q. Li, Z. Huang, J. Traer, J. H. McDermott, J. B. Tenenbaum, and W. T. Free-
man. Generative modeling of audible shapes for object perception. In The IEEE International
Conference on Computer Vision (ICCV), 2017.

[41] S. Young, G. Evermann, M. Gales, T. Hain, D. Kershaw, X. Liu, G. Moore, J. Odell, D. Ollason,
D. Povey, A. Ragni, V. Valtchev, P. Woodland, and C. Zhang. The HTK Book (version 3.5a). 12
2015.

[42] B. C. Moore and B. R. Glasberg. A revision of zwicker’s loudness model. Acta Acustica united
with Acustica, 82(2):335–345, 1996.

[43] J. M. Ide. Comparison of statically and dynamically determined young’s modulus of rocks.
Proceedings of the National Academy of Sciences of the United States of America, 22(2):81,
1936.

[44] E. J. Chen, J. Novakofski, W. K. Jenkins, and W. D. O’Brien. Young’s modulus measurements
of soft tissues with application to elasticity imaging. IEEE Transactions on ultrasonics, ferro-
electrics, and frequency control, 43(1):191–194, 1996.

[45] J. Wang, W. Li, C. Lan, and P. Wei. Effective determination of young’s modulus and poisson’s
ratio of metal using piezoelectric ring and electromechanical impedance technique: A proof-of-
concept study. Sensors and Actuators A: Physical, 319:112561, 2021.

[46] B. Frank, R. Schmedding, C. Stachniss, M. Teschner, and W. Burgard. Learning the elasticity
parameters of deformable objects with a manipulation robot. In 2010 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 1877–1883. IEEE, 2010.

[47] P. Boonvisut and M. C. Çavuşoğlu. Estimation of soft tissue mechanical parameters from robotic
manipulation data. IEEE/ASME Transactions on Mechatronics, 18(5):1602–1611, 2012.

[48] A. Davis, K. L. Bouman, J. G. Chen, M. Rubinstein, F. Durand, and W. T. Freeman. Visual
vibrometry: Estimating material properties from small motion in video. In Proceedings of the
ieee conference on computer vision and pattern recognition, pages 5335–5343, 2015.

[49] D. L. James, J. Barbič, and D. K. Pai. Precomputed acoustic transfer: Output-sensitive, accurate
sound generation for geometrically complex vibration sources. ACM Trans. Graph., 25(3):
987–995, July 2006. ISSN 0730-0301. doi:10.1145/1141911.1141983. URL https://doi.
org/10.1145/1141911.1141983.

[50] W. v. Schaik, M. Grooten, T. Wernaart, and C. v. d. Geld. High accuracy acoustic relative
humidity measurement induct flow with air. Sensors, 10(8):7421–7433, 2010.

11

http://dx.doi.org/10.1145/1141911.1141983
https://doi.org/10.1145/1141911.1141983
https://doi.org/10.1145/1141911.1141983

[51] C. Zheng and D. L. James. Toward high-quality modal contact sound. In ACM SIGGRAPH 2011
papers, pages 1–12. 2011.

[52] V. Valimaki, J. D. Parker, L. Savioja, J. O. Smith, and J. S. Abel. Fifty years of artificial rever-
beration. IEEE Transactions on Audio, Speech, and Language Processing, 20(5):1421–1448,
2012.

[53] J. S. Abel, S. Coffin, and K. Spratt. A modal architecture for artificial reverberation with ap-
plication to room acoustics modeling. In Audio Engineering Society Convention 137. Audio
Engineering Society, 2014.

12

Appendix A Method Details

A.1 Differentiable impact force profile

ALGORITHM 1: Differentiable Impact Force Profile Computation

Input: Normalized magnitude estimate time series vector min∈RTin , normalized contact
time scale estimate time series vector τin∈RTin , final number of time samples Tout,
and expected number of peaksM

Output: A predicted impulse profile over time, with Tout samples sampled at rate fs Hz
mout←MagScaleFn(min);
τout←TauScaleFn(τin);
mout←HannWindowResample(mout,Tout);
τout←HannWindowResample(τout,Tout);
w←bTout/Mc;
Ind←ArgmaxPool(mout,Kernel=w,Stride=w);
t←([Ind−δ]◦mout[Ind−δ]+Ind◦mout[Ind]+[Ind+δ]◦mout[Ind+δ])/3fs;
return F ([0,1/fs,...,Tout/fs];mout[Ind],t,τout[Ind])

Here, we describe the details of the algorithm we use in Section 3.2 for generating a physics-based
series of impact impulses at audio sample rate over time, using as inputs two coarsely temporally
discretized and normalized time series. These inputs are the outputs of an encoder in the case of
our End-to-End experiment, or learnable time series parameter vectors in the case of our Analysis-
by-Synthesis experiment. We will describe how we convert these normalized inputs into inputs for
Equation 3 in a fully differentiable manner.

To model Equation 3, we must choose an integer value for M in the equation, corresponding to the
number of impacts occurring during the interval. To do this, we fix M as a hyperparameter based
on a reasonably tight upper bound of our expectation of the overall frequency of impacts, with the
impacts spaced somewhat regularly across the interval. Because M is intentionally chosen to be
an overestimate of the number of impacts occurring during most time intervals, our algorithm for
Equation 3 will frequently instantiate more impacts than actually occurred in an interval. Impacts
that have been placed in subintervals where no impact occurred should ideally approach magnitude
mi=0.

Our differentiable impact profile algorithm, with pseudocode shown in Algorithm 1, takes a coarsely
discretized time series of network outputs or variables corresponding to continuous normalized input
parameters for estimating magnitude and τ values forM different impact impulses, each modeled by
Equation 2. We pass the input parameters for the magnitude and the τ values through respective scal-
ing functions, MagScaleFn and TauScaleFn in Algorithm 1. MagScaleFn and TauScaleFn
are both exponential sigmoid functions. Each vector has Tin temporal elements, but with Tout being
the number of samples in the final output audio, at an audio sample rate fs Hz, the input time series
are coarsely discretized such that Tin << Tout. Given an input vector of a time series of magni-
tudes min = [min,0,...,min,Tin] with Tin temporal elements, MagScaleFn bounds the magnitude
estimates from 0 to 2:

MagScaleFni(min,i)=umag∗sigmoidλmag (min,i+bmag)+lmag (4)
mout=MagScaleFn(min), (5)

where bmag is a hyperparameter bias for controlling initialization conditions, hyperparameters umag
and lmag control the upper and lower bounds respectively of the scaling function, and MagScaleFn
stacks the output of Equation 4 into a vector. We set hyperparameter lmag to a very small constant
(10−7), ensuring the scaled magnitude never fully collapses to 0 during optimization. The exponent
λmag on the exponential sigmoid function is a hyperparameter controlling the slope of the function
about x=0.

Given a similar input vector for the τ values, τin = [τin,0, ... ,τin,Tin], we produce the τout scaled
vector as follows:

TauScaleFni(τin,i)=uτ ∗sigmoidλτ (τin,i+bτ)+lτ/fs (6)
τout=TauScaleFn(τin) (7)

where fs is the audio sample rate, bτ is a bias learned for each material, hyperparameter λτ controls
the slope on the sigmoid, hyperparameters uτ and bτ control the respective upper and lower bounds

13

of the scaling function, and TauScaleFn stacks the output of Equation 6 into a vector. We have
the learnable bias bτ because each material is likely to have a different distribution of τ , depending on
softness of the object’s material or contact surface. Harder materials should have smaller τ values, and
softer materials should have larger τ values. The upper bound uτ on this scaling function ensure that
contact time scales τ remain within physically reasonable ranges (below 3ms for our experiments),
and the lower bound lτ ensures that the resulting impulse force profile’s curve shape does not degrade
too much as the width of the curve approaches the sample rate.

(a) Encoder input (ground truth spectrogram) (b) Encoder output (algorithm input) (c) Scaled input values

(d) Resampled scaled input values (e) Selected magnitude peaks and correspond-
ing τ values

(f) Weighing local neighbors for peak timing
fine adjustment

(g) Adjusted peaks (h) Computed impact profile (i) Spectrogram of final waveform synthesized
by downstream components

Figure 5: Steps of the Differentiable Impact Force Profile algorithm

We next resample both time series to the resolution of the audio sample rate (e.g., 44100 Hz) using
Hann windows. We select peaks in the resampled magnitude time series using an ArgmaxPool
operation, with window sizes based on the length of the time interval divided by M . Since selecting
the peaks withArgmaxPool can lose any gradient with respect to the timing of the peaks, to recapture
this gradient, we next adjust the selected peak timings by taking a magnitude-weighted average of the
magnitude at the peak timings and a preceding and a succeeding neighboring magnitude of each
selected peak. Finally, we select the magnitude and τ values from the time instant of each peak in the
series. Through these differentiable steps, we now have the magnitude vector m, the timing vector t,
and contact time scale vector τ , providing us with all the input parameters for Equation 3, producing
a fully differentiable impact impulse profile with M peaks over the time interval. For an example
walkthrough of each of these steps, see Figure 5.

A.2 Modal impulse response

For our modal impulse response, we will explain how we take normalized input parameters and convert
them into input parameters of our modal impulse response equation from Section 3.3:

IRo(t;f ,go,do)=go
T [exp(−dot)◦sin(2πf t)], (8)

where f=[f0,...,fK], go=[g0,...,gK], do=[d0,...,dK] and ◦ is the Hadamard product.

14

We begin with vectors ain = [a0, ... ,aK], bin = [b0, ... ,bK], and fin = [fin,0, ... ,fin,K] which are
normalized (unscaled) input vectors corresponding to the gains go, dampings do, and frequencies f ,
respectively. For scaling input vector ain into go, we use a softmax scaling function :

ModalGainScaleFni(ai)=
exp(ai)∑
jexp(aj)

(9)

go=ModalGainScaleFn(ain) (10)

where ModalGainScaleFn stacks the output of Equation 9 into a vector. This softmax formula-
tion maintains a normalized distribution of relative gains of each frequency component in the modal
impulse response, ensuring that the overall magnitude of the impulse response is not a free parameter
during optimization, but rather is completely deferred to the impact impulse force profile.

To convert the input vector bin into the damping vector do, we use an exponential sigmoid function:

DampingScaleFni(bi)=udamp∗sigmoidλdamp(bi+bdamping)+ldamp (11)
do=DampingScaleFn(bin) (12)

where bdamping is a hyperparameter bias, hyperparameter λdamp controls the slope of the sigmoid,
udamp and ldamp are hyperparemeters for the respective upper and lower bounds of the function, and
DampingScaleFn stacks the output of Equation 11 into a vector. We set the value of the upper
bound udamp in Equation 11 to 10000 to ensure that the damping values do not cause the contribution
of their corresponding mode to disappear from the final impulse response at the audio sample rate.

Finally, for scaling input vector fin into frequencies vector f , we use a scaling function from the authors
of [24], where input parameters are used to fine-tune a somewhat even distribution of frequencies over
a range of frequencies (e.g. the range of human audible frequencies from ∼20Hz - 20kKhz), with
respect to a Mel scale for human audio perception. First, we will define some equations important to
the Mel scale [41]:

MelToHz(x)=700∗(10.0(x/2595.0)−1.0) (13)
HzToMel(x)=2595∗log10(1.0+x/700.0), (14)

And the equivalent rectangular bandwidth (ERB) equation attempts to approximate theoretical fre-
quency bandwidth filters in human hearing [42]:

HzToERB(x)=0.108x+24.7, (15)

Now using these equations, we scale fin into f as so:

CenterFreq(i)=(1− i

K−1
)∗HzToMel(fmin)+

i

K−1
∗HzToMel(fmax) (16)

FrequencyScaleFni(fin,i)=CenterFreq(i)+tanh(fin,i)∗HzToERB(CenterFreq(i))
(17)

f=FrequencyScaleFn(fin) (18)

where fmin and fmax are hyperparameters corresponding to the lower and upper bound of the fre-
quency range, respectively. FrequencyScaleFn stacks the output of Equation 18 into a vector.

A.3 Reverb

Here we describe how we scale normalized input parameter vectors into parameters for our room
impulse response described in Section 3.4, which we use to model reverberation effects,

IRe(tIR;ge,de)=ge
T [exp(−det)◦filt(N (t),Be)], (19)

where ge and de are the gains and damping factors per frequency band, respectively, and have each
have dimensionBe.

Given input vector gin = [gin,0,...,gin,Be], we produce ge = [ge,0,...,ge,Be] using a similar scaling
function as that from Equation 5:

ReverbGainScaleFni(gin,i)=2.0∗sigmoidlog(10)(min,i+breverbgain)+10−7 (20)

ge=ReverbGainScaleFn(gin), (21)

15

where breverbgain is a hyperparameter bias, and ReverbGainScaleFn stacks the output of Equa-
tion 20 into a vector.

For the dampings, we scale input vector din=[din,0,...,din,Be] to produce de=[de,0,...,de,Be].

ReverbDampingScaleFni(din,i)=2.0+exp(din,i+bdecay) (22)
de=ReverbDampingScaleFn(din) (23)

where bdecay is a hyperparameter bias, and ReverbDampingScaleFn stacks the output of Equa-
tion 22 into a vector.

With these differentiable scaling functions, we convert input parameter vectors gin and din into pa-
rameter vectors ge and de, respectively, to be used as the inputs for Equation 19.

Appendix B Analysis by Synthesis Experiment Details
Here we describe some further details about the data collection and methods used for our experiment
in Section 4.1, then show some additional results.

Figure 6: Physical setup for Analysis by Synthesis dataset collection. A microphone at the top left records audio
from the suspended ceramic mug being struck by the impact hammer on the right.

Dataset To collect our dataset, we first suspended each of the four everyday objects shown at the
bottom right of Figure 4 on a string to minimize the effects of contact dampings on each object’s
vibrations. We then struck each of them with a PCB 086C01 impact hammer with a force transducer
and a hard nylon tip. We took synchronized recordings of audio with a PCB 378A06 microphone and
this impact hammer while striking the objects repeatedly in roughly the same place. We adjusted gains
on the microphone to maximize volume but prevent clipping for each object. We collected at least 60
seconds of data per object, then reviewed each object’s data to find a 3 second clip for each object
where the audio did not clip, and the impact forces were frequent and varied enough to be interesting
to try to capture. Our data collection setup is shown in Figure 6.

Optimization Setup Our optimization used all the green elements in Figure 1, with the nuance
that the inputs to the Impact Force Profile Generator, instead of coming from the encoder, were two
variable vectors for the two normalized time series input parameters min and τin required by the
scaling functions of the generator (see Equations 5 and 7 in Appendix A.1). For this experiment, in
order to mitigate the risk of falling into local minima early in the optimization, we also added zero-
mean Gaussian noise to the magnitude variable vector. We controlled the standard deviation of the
noise with a learnable variable vector representing a time series of standard deviations, with the same
temporal resolution as the magnitude time series variable vector and all elements initialized to 0.1.
We randomly initialized all other parameters including these two variable vectors, then optimized our
loss function comparing the output of our model with the ground truth original audio with respect
to all parameters, using the Adam optimizer [29]. To be clear, we did not provide our model with
supervision for the impact force profile.

16

Figure 7: Comparing our model’s estimates to ground truth time series of normalized contact forces and spec-
trograms, for our analysis by synthesis task on short recordings of each everyday object.

Full Results The results of using our model to fit parameters to each of the four objects are shown
in Figure 7, and we include examples in our Supplementary Video for qualitative comparison. As we
can see in Figure 7, each spectrogram demonstrates that the audio our model is able to produce for
each object is very similar to its ground truth recorded audio. Furthermore, for each of the objects,
our model fits an impact force profile which will most effectively produce audio approximating the
ground truth recording, and as we can see, the timings and relative magnitudes of each of the impact
impulses that our model has derived during the optimization are remarkably similar to the ground
truth hammer force transducer recordings. This validates our hypothesis that our model is able to both
generate realistic impact audio and extract physically interpretable parameters along the way, through
this unsupervised analysis-by-synthesis process.

Appendix C End-to-End Learning Experiment Details
C.1 ASMR Bakery Dataset

(a) Wooden box (b) Glass bowl (c) Silicone pad

(d) Steel bar (e) Ceramic plate

Figure 8: Objects selected for our dataset from the ASMR Bakery YouTube channel

In searching for in-the-wild audio recordings of impacts, we discovered the ASMR Bakery YouTube
Channel [1]. At time of writing, the channel features hundreds of YouTube videos of the creator

17

manipulating different everyday objects without speaking, providing an “unpolluted” dataset of ma-
nipulation sounds. We narrowed our search to videos with titles including “tapping”, and used the
annotations on each video to find interesting objects to select for our dataset. For the sake of our
experiments, we assumed that each of the clips that were labeled as being of “tapping,” consisted of
only tapping sounds, i.e. were all real world impact sounds. However, in some of our clips, there
were multiple occasions that the creator’s in-hand manipulations of the objects inadvertently caused
rubbing sounds in the course of tapping. These rubbing sounds were unfortunately unmodeled in our
framework, causing our model to try to fit impact sounds to them. This demonstrates the importance
of future work to expand our model with models for non-impact contacts such as rubbing and scratch-
ing. The creator used only fingertips and fingernails to tap each object in the clips we selected. We
assumed that the fingernails and fingertips were small and damped enough that their modal vibrations’
contribution to the sound was negligible, and therefore did not include their impulse responses as a
contribution to the final sound in our framework’s formulation. We only assumed that the fingertips
and fingernails could cause acceleration sounds when they struck the object.

C.2 Our Model and Baselines

The high-level structure of our model used for this experiment is diagrammed in Figure 9. We first
convert the spectrogram to Mel-frequency cepstrum coefficient (MFCC) features, which we fed into
an encoder almost identical to that of [15]. The encoder consisted of a Gated Recurrent Unit (GRU),
followed by a 1D temporal convolution with leaky ReLU activation, four fully connected layers with
a leaky ReLU activation, followed by a GRU, then three more fully connected layers with leaky ReLU
activation. Our autoencoder structure diverges from [15] after the encoder. We fed the outputs of this
encoder directly to our model as the normalized input parameter vectors to our generators which we
had combined in a directed acyclic graph (DAG) as summarized in Figure 1. We will refer to this
section of our model as the Synthesizing DAG (see Figure 10), and compare it to two of our baselines.
We passed the time series of outputs from the encoder as input to the Impact Force Profile generator,
and used randomly initialized parameter variables as inputs for the other generators. To ensure that
our model can effectively capture sharp impacts with short time scales without being too constrained
by the lower bound of the scaling function in Equation 6, each of our generators produces its output at
twice the final audio sample rate. Therefore, our final operation in our Synthesizing DAG performs a
linear resampling to take our model’s output back to final audio sample rate.

Both the DDSP Serra and DDSP Sin baseline models used the exact same encoder structure as our
model but only vary the structure of the Synthesizing DAG by using pre-existing generators. This
allows us to isolate the effects of our contributions. The DDSP Serra model used the same Synthesizing
DAG as [15] (Figure 11), based on the Serra-Smith model[30], using encoder outputs to control both
a harmonic oscillator and time-varying filtered noise, summed to make the final output. Since the
modal vibrations of general objects are not necessarily harmonic like the musical instruments for
which the Serra-Smith model was designed, we constructed the Synthesizing DAG for the DDSP
Sin by replacing the harmonic oscillator of DDSP Serra with an unrestricted time-varying sinusoidal
oscillator (Figure 12). These two models were trained with the same loss as our model, with the
addition of spectrograms of lower window sizes (128 and 64) to mirror the loss used in the work
which introduced these models [15, 24] (details in Appendix C.2).

Figure 9: High-level Autoencoder Diagram

18

Figure 10: Proposed Synthesizing DAG.

Figure 11: “DDSP Serra” baseline model Synthesizing DAG.

Figure 12: “DDSP Sinusoidal” baseline model Synthesizing DAG.

C.3 Human Study

For each of our published Human Intelligence Task (HIT) tasks on Amazon Mechanical Turk, we
presented the workers with 12 questions containing randomly chosen tapping ASMR videos from
our test set of each of the 5 different objects: wooden box, glass bowl, silicone pad, steel bar, and
ceramic plate. Each of these videos had been redubbed with either our model’s output or the output of

19

Figure 13: Comparing human study ratings of realism of different ASMR objects’ test set outputs from each
model to the output of the undertrained WaveGlow model (“WaveGlow 10k”).

Figure 14: Comparing average computational audio distance metrics of test set output from different models to
the output of the undertrained WaveGlow model (“WaveGlow 10k”).

a baseline model, where the input to each model was the spectrogram computed from the ground truth
original audio, or we left the video with its ground truth audio. In each question, we presented the
participants with two videos, one from each treatment, and asked them to choose the one that better
matches the sound they would expect from the object in the video. We conducted 30 HITs per model
resulting in a total of 120 HITs. To detect fraudulent responses from users who were not following the
instructions, we randomly selected 2 out of 12 questions in each HIT as checkpoints where a video
redubbed with white noise was presented as one of the options. We then removed the responses of the
users who chose white noise in those questions from our study to produce the results we show. 15 out
of 120 HITs were determined as fraudulent based on this metric. Our final results included answers
from the remaining 105 HITs containing a total of 1050 questions across all models.

C.4 Effects of Training Time on WaveGlow Performance

In Section 4.2, we claim that our model is able to learn to generate audio which is realistic enough to
be narrowly rated as more realistic on average than audio from the WaveGlow model [16], as shown
in Figure 3. However, WaveGlow requires much more computing resources to train, requiring about
300 hours to train a single object’s model on a desktop computer with an Nvidia Quadro P5000 GPU,
versus our model and other baselines requiring about 1 hour. To demonstrate the necessity of training
the WaveGlow model for this long, here we show the results of our experiments from training each
WaveGlow model for only 10,000 steps, requiring about 30 hours on our single GPU desktop, whereas
the results we have presented as “WaveGlow” in all figures are from models which have been trained
for 70,000 steps for each object, requiring about 300 hours on our desktop. Results are shown in
Figures 13 and 14.

20

Appendix D Source Separation Experiment Details

In this experiment, the only supervision used during the optimization were the sound clips from each
pairwise impact, and the labels of which object and tool are present in each clip. These labels can be
considered as weak supervision.

ALGORITHM 2: Modal Impact Sound Source Separation Optimization

Input: Batch of recorded impact waveforms W∈RB×T , weak labels ofNo distinct object
IDs present in each waveform Lo∈WB ,No≤B, and weak labels ofNt distinct tool
IDs present in each waveform Lt∈WB ,Nt≤B

Output: Object modal parameters Mo∈RNo×3Fo , tool modal parameters Mt∈RNt×3Ft ,
tool reverb parameters Rt∈RB×3FR , contact force parameters Cf ∈R3B ,
acceleration sound scalars A∈RB , environment noise parameters N∈RFN , and
noise scalars Ns∈RB

Mo,Mt,Rt,C,N,Ns←InitParameters();
for i←1 to S do

Mo,temp←Replicate(Mo,Lo);
Mt,temp←Replicate(Mt,Lt);
F←F ([0,...,T];Cf);
Wo←F~IRo([0,...,T];Mo);
Wt←F~IRo([0,...,T];Mt);
WN←Ns◦N([0,...,T],N);
Ŵ←Wo+Wt+WN+A◦F;
Ŵ←Ŵ+Ŵ~IRe([0,...,T];Rt);
Mo,Mt,Rt,C,N,Ns←GradientStep(L(W,Ŵ),{Mo,Mt,Rt,C,N,Ns});

end
return Mo,Mt,Rt,C,N,Ns

Algorithm details We show abstracted pseudocode for the impact sound source separation opti-
mization algorithm in Algorithm 2. After iteratively optimizing all the parameter variables with this
algorithm, we generate separated object and tool sounds by using the generation code in the inner loop,
but eliminate components from the generation process which are irrelevant to each separated source
we are synthesizing. For example, we can synthesize a “denoised” version of the impact sound by
omitting the contribution of the noiseWN from all summations within the generation code in the inner
loop. For synthesizing the object modal sounds, we take Wo alone as the final sound. To produce the
separated tool sounds, including the acceleration sound, we take Wt, add acceleration sound A◦F,
finally add this result with the convolution of itself and the reverberation filter IRe([0,...,T];Rt). For
further details, we have included our source code for this in our Supplementary Materials.

Material classification model For training a material classification model which can classify ob-
ject materials from audio, we first begin with the Sound-20K dataset [40], which has thousands of
synthesized audio recordings of different virtual objects of different materials falling on surfaces in
a virtual environment. We first filter the available audio samples down to those from virtual objects
made of materials we tested for our experiments (“ceramic”, “polycarb” “steel”, and “wood”), and
then balance our dataset by taking the same amount of recordings from each material. We then com-
pute the spectrogram of the audio sample with a window size of 512, to ensure a balance of frequency
and temporal resolution, so that the input can capture and characterize the rapidly decaying modal
frequency components in each impact. We split our data with a 90-10 train-validation ratio.

Our model takes this input, passes it through a Gated Recurrent Unit (GRU) layer, followed by two
fully-connected layers with ReLU activations, and a final fully-connected layer with a softmax ac-
tivation. During training, we use dropout on the outputs of the GRU and hidden layers to prevent
overfitting, and train using the Adam optimizer [29] until a local minimum is reached in the loss on
the validation data. Note that this model has not been trained on any real audio data.

Additional classification results In Figure 15, we show the confusion matrices comparing how well
our pre-trained material classification model can classify the material of the objects and tools from
the original audio versus the audio that our model generates as their “separated” impact audio. The

21

Figure 15: Confusion matrices for classifying material of the struck object and the tool with a classifier trained
on Sound20k. (Top Left) Classifying the object with the original audio. (Bottom Left) Classifying the object
with our separated audio. (Top Right) Classifying the tool with the original audio. (Bottom Right) Classifying
the tool with our separated audio.

material classification model clearly struggles to classify the original audio with the correct material.
We would expect that the sound the tool makes during the impact pollutes the sound that the object
makes when impacted. Therefore, we would expect the classifier to occasionally waver between
classifying the audio with either the object or the tool material. However, our confusion matrix at
the far left of Figure 15 shows that the model classifies the material of every audio sample with the
polycarbonate cup as wood, though only two of the eight recordings of striking the polycarbonate cup
use the wooden spoon. This suggests that this pollution of the tool and object sound together can cause
the classifier to classify the audio as the material of neither of the objects.

Our trained classifier model generally struggles with classifying wood sounds correctly. This is espe-
cially evident in the tool classification confusion matrices on the right of Figure 15. Wood sounds are
very broad depending on the type and structure of the wood, e.g., hardwoods sound very different than
soft woods. Therefore, differentiating between wood and other materials with higher dampings, such
as polycarbonate, using only sound may be especially challenging.

Young’s modulus metrics Young’s modulus is a material property which quantifies the stiffness
of a material. Knowing an object or tool’s material stiffness is important for a robot to reason about
that object or tool’s affordances. For hard materials, precisely measuring Young’s modulus tradi-
tionally requires invasive or destructive measurement of precisely fashioned samples [43] or requires
highly specialized measurement equipment and dedicated sensors with which robots are generally
not equipped [44, 45]. Robots have been shown to be capable of using force sensors to measure
soft objects [46] and soft human tissues [47], but these objects have Young’s modulus values which
are many orders of magnitude lower than those of hard materials such as ceramics and steel. In a
modal model of object vibrations, the sound of an object’s modal response is highly influenced by
the Young’s modulus value of its material [21]. Vibrations and sound have been successfully used to
infer Young’s modulus of materials of rods of known geometry [48] and of simulated objects [22].
Inspired by this work, we determine how accurately we can predict Young’s modulus values for the
material of each object and tool from the impact sounds separated by our approach and compare to
the same source separation baselines we used for the material classification experiment in Section 4.3.
We train a regression model on only the Sound20k dataset of synthetic impact sounds of objects of
different materials [40], using their Young’s modulus values as labels. We then use this model, trained
only on synthetic audio, to predict Young’s modulus of the materials of the real objects and tools from
each approach’s source-separated impact sounds. We measure error in terms of percent error of the
estimate relative to the ground truth value.

22

Table 2: Estimating Young’s modulus from source-separated audio.

Object Regression Error (%) Tool Regression Error (%)

Model Dataset Min Instance Min Dataset Min Instance Min

Raw audio 263.4 263.4 243.3 243.3
NMF [38] 174.4 93.4 153.3 97.8
DAP [39] 161.0 71.9 227.7 104.1
DiffImpact (ours) 59.6 46.1 118.0 86.6

Young’s modulus regression model We used a slightly different model architecture and training
regimen for the regression task of estimating Young’s modulus from sound versus our model for ma-
terial classification from sound. We used the entire Sound20k dataset for training and validation,
without filtering based on materials, in order to increase the training set size, splitting the dataset with
a 90-10 training-validation split. We obtained labels for Young’s modulus from the material configu-
ration files accompanying the dataset. Each clip in the dataset is a∼2-second simulated recording of
an object bouncing on a surface, so each clip includes the sound from multiple impact events. Because
the clips from our source separation audio were each 1 second long and included the sound of exactly
one impact event, we designed our architecture to be more invariant to the number of impact events
or length of clip. We thus replaced the recurrent unit of our classification model with three dilated 1D
temporal convolution layers, each with ReLU activations, followed by a maximum pooling operation
across the entire temporal dimension for each feature channel. Similar to our material classification
model, we followed this with two fully-connected layers with ReLU activations, with a final fully
connected layer to output the final Young’s modulus regression estimate. To mitigate overfitting, we
trained this model with dropout regularization on the output of the maximum pooling layer and each
of the hidden fully connected layers. Because the Young’s modulus values for different materials
spanned multiple orders of magnitude, we trained against a mean squared logarithmic error loss with
the Adam optimizer [29] until the validation error had reached a minimum. Note that this model was
not trained on any real audio data.

Young’s modulus results The results of this regression task are shown in Table 2. Similar to the
results of the classification experiments in Section 4.3, we evaluate the performance of our regression
model on the outputs of our framework against its performance on the outputs of baselines using
two different schemes, since our baselines do not explicitly differentiate which output comes from
which source, object or tool. In the “Dataset Min”, we take the minimum between the mean percent
error of treating the first output and treating the second output as the object sound. We do the same
for tools. Under the “Instance Min” scheme, we take the minimum percent error between the two
outputs for each instance instead of across the whole dataset, then take the mean across all instances.
Similar to the classification results, both schemes offer the baselines an advantage, but our DiffImpact
outperformed them, while also explicitly differentiating between the object and the tool. Also similar
to our classification results, our framework performs better on the object sounds than the tool sounds,
perhaps for the same reasons which could explain the difference in performance between tool and
object classification, detailed in Section 4.3.

Appendix E Model Assumptions

Assumptions about the quantities and features influencing our model are organized in Table 3 by
whether they are known, observable and estimated by our model, or unobservable. We either assume
unobservable quantities to be constant, select them as a hyperparameter, or estimate them to a relative
scale. Priors are induced on estimated quantities by the hyperparameters selected for bounds of the
scaling functions (see Appendix A) and those selected for initialization and biases (see Appendix F).

For the recording, we have the ground truth waveform, but for recordings from the wild, the mi-
crophone’s position, gain, and directionality (e.g., cardioid or omnidirectional) are assumed to be
unobservable but constant for each recording. Because these quantities are unobservable, we do not
model acoustic transfer, which would depend on the microphone’s position relative to the object [49]
and properties of air in the environment [50]. We instead assume any effects of acoustic transfer to be
part of the impact magnitude and object modal response. For the impact, because we do not observe
the microphone position and gains, we cannot estimate absolute quantities of impact force magni-
tudes without calibration. For the count of impacts, we know exactly one impact occurs in recordings

23

Table 3: Model assumptions of information and physical quantities.

Known Observable (Estimated) Unobservable (Assumed)

Recording • Waveform
• Microphone position
• Microphone gain
• Microphone directionality

Impact • Count (Sec 4.3)
• Magnitude (relative)
• Time scale
• Timing

• Count (Sec 4.1 and 4.2)
• Magnitude (absolute)
• Location

Object • Instance ID
• Tool instance ID (Sec 4.3)

• Mode frequencies
• Mode gains (relative distri-

bution)
• Mode dampings

• Mode count
• Mode gains (absolute)
• Contact conditions

Environment
• Static noise gains
• Reverb response gains
• Reverb response decays

• Geometry

of Section 4.3, but we do not have ground truth counts of the number of impacts in recordings of
Sections 4.1 and 4.2 and select this as a hyperparameter as described in Appendix A.1. Our model
estimates the time scales (sharpnesses) and timings of impacts (shifted by the unobserved sound travel
time from object to microphone), though estimated magnitudes are proportional rather than absolute.

For objects, we only know the object’s instance ID (as well as the tool instance ID for Section 4.3). We
select a reasonable number of salient modes as a hyperparameter, then estimate the frequencies and
dampings of those modes. For mode gains, because we do not have absolute impact magnitudes as
previously explained, we estimate a normalized relative distribution. We also do not know the exact
contact conditions of the object, which will dampen certain frequencies depending on the region,
force, and material properties of each contact on the object [51]. We instead assume contact damping
to be negligible or part of the object’s intrinsic modal impulse response. Striking an object in different
locations excites each mode of the object at a different gain [18], but since we do not observe the
location of each impact, we assume the location of impact to be constant for our all our models.

Finally, while we estimate static measurement noise, we have measured neither the geometry nor
the standalone impulse response of our environment for reverberations. Room reverb responses are
often specifically measured with a small explosion of air to record the independent response of the
room [52]. A popular model for a room’s reverb response is a modal model, which can require 1000-
2000 separate modes to characterize [53]. Because we have no such isolated measurement or knowl-
edge of the room geometry (nearby surfaces’ distances, angles, and absorptions) from recordings in
the wild, and we cannot separate out reverb mode responses from object mode responses, we instead
model only the late stage reverb response of the room with exponentially decaying filtered noise [52].

Appendix F Hyperparameters and Initialization

Here we make some high-level observations about the effects of different choices of hyperparameters
and initialization. Specific values can be found in our released code.

Loss function Perhaps the most influential hyperparameters are those of the loss function, the multi-
scale spectrogram loss detailed in Section 3.5. With spectrograms, there is an inherent tradeoff be-
tween the time resolution and the frequency resolution, which are inversely and directly proportional
to the window size, respectively. For the object modal response, frequency resolution is important
for precisely estimating modal response frequencies, and time resolution is important for precisely
characterizing the decay of each mode to estimate damping. Time resolution is especially impor-
tant for precisely localizing the onset of the impact sound, which is upstream of characterizing every
other feature of the impact sound. For example, mistakenly estimating the timing of the impact to
be slightly after the ground truth timing could cause the model to characterize the object’s modal im-
pulse response as only the tail end of the ground truth response, where many modes will already have
decayed significantly.

The intention of using multiple scales of spectrograms is to attain the best of both worlds in terms
of both frequency and time resolution. However, natural spectrograms can present an optimization
landscape which is far from smooth. Spectrograms with high time resolution are finer-grained and

24

less smooth on their temporal axis, causing much more potential for local minima in optimizing the
temporal alignment of the synthetic impact sound with the ground truth impact sound. Spectrograms
with lower time resolution present a much smoother optimization landscape with respect to timing.
This same concept can be an important consideration with respect to the risks of optimizing frequency
values of the modal response using spectrograms with large window sizes and high frequency resolu-
tion. Even though the final loss is summed across the spectrograms of different resolutions, a given
spectrogram could dominate this loss and resulting gradients, such that the other spectrograms could
not rescue the optimization from a local minimum. For these reasons, we eliminated the two spectro-
grams with the smallest window sizes from the loss function of [15] for our loss function on impact
sounds. Also for these reasons, whenever we could assume only one impact occurred during a clip as
we could in Section 4.3, we initialized the timing of the impact to the location of the maximum of the
absolute value of the waveform across the recorded clip.

Generator biases Tuning bias hyperparameters for the different generator functions is important
for ensuring faster convergence to reasonable values. During the optimization, each generator is
essentially competing to explain different aspects of the sound. Starting the optimization with too high
of gains for one generator could cause that generator’s output to dominate the sound. For example, the
background noise generator could overfit its filter gains to match the sounds of impacts as closely as
possible with its time-constant noise.

Frequency resolutions Our Modal IR, Filtered Noise, and Reverb generator functions each could
compute outputs for inputs with varying resolutions of frequencies. More specifically, for the Modal
IR, the number of modes could be varied, and for the Filtered Noise and Reverb generators, the number
of noise bands for each could be varied. The frequency resolutions of these generators presented a
tradeoff between expressiveness and robustness to overfitting. For example, in our source separation
experiment with a very small dataset, choosing too high of frequency resolutions for both the object
and tool modal models in the Modal IR increased the likelihood that an object’s separated sound
would include faint artifacts of sound from one or more of the tools which struck it. Choosing a lower
frequency resolution for each Modal IR forces our model to fit the more salient modal components of
each object and tool.

25

	Introduction
	Related Work
	Differentiable Rendering of Impact Sounds
	Overview
	Differentiable impact force profile and acceleration sound
	Object impulse response
	Environment noise and reverberation
	Loss function

	Results
	Analysis by synthesis: Fitting to single real impact sounds
	End to end learning: Learning rigid body impact sound models from in-the-wild audio
	Robotic task: Source separation of kitchen utensil sounds

	Conclusion
	Method Details
	Differentiable impact force profile
	Modal impulse response
	Reverb

	Analysis by Synthesis Experiment Details
	End-to-End Learning Experiment Details
	ASMR Bakery Dataset
	Our Model and Baselines
	Human Study
	Effects of Training Time on WaveGlow Performance

	Source Separation Experiment Details
	Model Assumptions
	Hyperparameters and Initialization

