
Deep Scoop

Samuel Clarke
Andrew ID: sclarke1

The Robotics Institute
Carnegie Mellon University

Pittsburgh, PA 15213
sclarke1@andrew.cmu.edu

Abstract

In this paper, I investigate the strength of using deep reinforcement learning tech-
niques in the domain of robotic manipulation of granular media. I compare different
popular algorithms in their performance on the task of controlling a robot as it
scoops a varying desired mass of pellets from a tub. Each policy performed signifi-
cantly better than a random policy, with the best performing policies both being
based on sampling actions with distributions based on a critic network, rather than
directly using an actor network to select actions. Variations in how each policy
used data from past experiences are demonstrated to have significant effects on the
performance of each policy over time.

1 Introduction

Using reinforcement learning to devise policies over real-world physical systems is often made
possible through training an agent on high-fidelity simulations, restricting an agent to interact with a
physical system with dynamics that are simple to learn or model, or using a good model for estimating
the dynamics of the physical system. Unfortunately, the domain of granular materials fails to satisfy
each of these constraints. Deep learning has proven itself to be quite effective in navigating complex
relationships and structure where many other approaches fail. Using deep learning to capture the
complex dynamics of granular media therefore seems to be a natural impulse, but practically speaking,
sample efficiency is a great challenge to overcome when applying deep learning to such a complex
“real-world” domain.

Manipulation of granular media is thus a domain for which deep learning approaches seem promising,
but could be fraught with very tough challenges such as those previously detailed. This paper thus
seeks to investigate the application of deep reinforcement learning to learning how to manipulate
granular materials through a task in which a robot must scoop an arbitrarily specified mass of plastic
pellets. The robot’s perception of its state consists of an interpolated height map of the surface of the
pellets, and its task is to select parameters of a scooping action that will successfully scoop a desired
mass of pellets. Note that, as an open-loop action without the potential to make online adjustments
from visual or tactile feedback, this task would likely be rather difficult for a human to complete, as it
would require a rather strong ability to predict the complex dynamics of the granular material at hand.
Different methods involving deep learning will be evaluated and compared in their competence to
accomplish this task.

2 Related Work

With respect to robots and granular media, there is a sizable body of work on mobile robots interacting
with granular media throughout the process of locomotion [5, 6]. Some work has approached building
models and simulations specifically for modeling these types of interactions [9]. There is also work



in modeling and controlling scooping motions for large construction equipment [12]. Learning has
been applied to the task of pouring granular materials [19, 10]. For example, Rozo et al. [10] used
demonstration learning for a robot to learn how to pour a specific volume of small metal spheres from
a bottle into a cup.

A similar problem to the problem of this paper was approached by Schenck et al. [15], in which the
authors attempted to have a robot learn to scoop and dump a granular material into an empty container
to make a desired shape within a specified number of actions. The authors trained a predictive model
and used the Cross Entropy Method [2] to use their model to sample actions for their policy. An
approach similar to this will be used for comparison in this paper. Also, the authors used some
hand-engineered baselines and inputs for their model, whereas I intend to use such methods very
sparingly in order to attempt to force my learning algorithms to perform the full exercise of learning
from more raw input and independently extract any dynamics relationships.

Model-free learning over tasks with discrete action spaces can be accomplished by estimating a
value function with a Deep Q-Network (DQN), with a memory buffer of previous experiences, i.e.,
a replay buffer, using these previous experiences to stabilize learning over new experiences [8].
Prioritizing more significant previous experiences (where the definition of significant could vary
based on application) in the replay buffer produced further improvements in performance on many
reinforcement learning tasks [13]. Whereas a standard DQN is designed to estimate a value function
with respect to a fixed goal, a Universal Value Function Approximator (UVFA) is able to estimate the
value of a state and action through a function that generalizes over different goals [14]. Furthermore,
Lillicrap et al. [7] introduced Deep Deterministic Policy Gradients (DDPG) as a method to train a
model for a policy simultaneously with a value function in continuous actions spaces, using target
networks to stabilize both a network mapping states to actions (the actor network) and a network
mapping states and actions to values (the critic network).

Sample efficiency has often been a challenge in applying deep reinforcement learning techniques
to solving problems in physical systems, especially with model-free approaches [3]. Hindsight
Experience Replay (HER) was developed in order to mitigate the sample efficiency of learning
UVFAs from sparse binary rewards, especially applicable in robotics applications [1]. However, it
stands to reason that the underlying concepts of HER could be applied to tasks with rewards that are
neither binary nor necessarily sparse, e.g. how I have designed the rewards for my task, as I will
describe in Section 3.2. Another technique that has been shown to improve sample efficiency of deep
networks in some cases is to use a single network with many layers shared by multiple tasks in multi-
task learning [11]. Even in the case where there is only one task at hand for the network, developing
auxiliary tasks can often improve sample efficiency [18], and many ground-breaking successful
single-task networks have used auxiliary tasks and corresponding losses during training to make
neural network parameters more expressive [17]. Unsupervised auxiliary tasks, their corresponding
auxiliary losses, and auxiliary rewards have been directly applied to deep reinforcement learning
algorithms to advance the performance of existing algorithms [4].

3 Methods

3.1 Experiment Setup

The physical setup for my experiment is shown in Figure 1. The robot is a Sawyer Robot Arm with
a custom 3D-printed plastic scoop mounted to its end-effector plate. In front of the robot is a tub
of round plastic pellets, resting on top of two USB scales for measuring the mass of the tub and the
pellets currently contained therein. Hence, the mass is recorded before each scooping action and after
each action to infer the mass of pellets in the scoop. The USB scales have been empirically observed
to have ∼ 4 gram worst-case and 2 gram average-case combined measurement resolution. An Intel
RealSense RGBD camera (shown in the top left of the image), faces down into the tub of plastic
pellets to capture a depth image of the surface. The camera is calibrated to world coordinates, and its
depth image is used to construct a bilinearly interpolated surface height map in world coordinates, as
shown in Figure 2.

2



Figure 1: The robot scooping through pellets.

Figure 2: Example surface height map.

3.2 Task Specifications

From a reinforcement learning standpoint, the task is theoretically similar to a Contextual Bandit
Problem. At each episode t, the robot is given goal gt, a desired mass (in grams) for the robot to scoop.
For each episode, a new goal gt was sampled uniformly randomly on the interval of even integers
[2, 100], such that the robot could realistically scoop the desired mass and that the average-case
measurement resolution of the scales (2g) was sufficient to measure success. The robot first makes an
observation of its state ot, which is an interpolated height map of the material in the tub, discretized
over half-centimeter width squares to make a 60x90 matrix. Based on this observation, it selects an
action at, a 6D vector defining a parameterized scooping motion (with the 6 parameters diagrammed
in Figure 3). Action at results in the robot scooping a certain mass mt, and the robot then receives
reward rt = −|mt − gt|. For reasons that will be explained in Section 3.3, I also gave the robot an
observation ft, the observation of the final state of the tub after action at was taken, with the same
specifications and structure as ot.
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Figure 3: The parameters of the scooping action. The entire scooping motion can be described as
follows: robot hovers high above the tub at the (x, y) coordinates, sets the pitch angle of the scoop to
θ, then plunges the scoop straight down to height zi. It then follows a linearly interpolated path to
point (x, y + L, zf ) while retaining the same angle θ. Upon reaching this final point, the robot then
tilts the scoop up about its back edge to a constant angle in order to retain the scooped material, then
lifts up out of the tub. Thus, in the example shown in the figure, the tip of the scoop would follow the
magenta arrow.

3.3 Learning a Predictive Model

I first collected data from over 8000 trials (constituting approximately 65 robot-hours of data) of
the robot selecting actions uniformly randomly within each parameter’s bounds, for each sample
recording the action parameters at, the initial and final observations ot and ft, as well as the scooped
mass mt.

Figure 4: Architecture of the predictive model, also used for the critic.

To inform my design of a critic model, I first experimented with training predictive models mapping
ot and at to mt. The architecture of the predictive model is shown in Figure 4, with a convolutional
encoder structure E, corresponding decoder structure D, and predicted mass pt. Also, dropout was
applied between each pair of fully connected layers after the concatenation and before the final
layer to mitigate the risk of overfitting to training data. To test the utility of auxiliary losses, I
tested this predictive model architecture with three different weighted combinations of mean-squared
error losses: one on only the prediction of mass mt, one with this loss and an added loss on the
encoder-decoder reconstruction of ot (Rt in Figure 4), and one with both of these losses and a loss on
the decoder reconstruction of ft from the output of one of the fully connected layers downstream
of both the encoder output and the action sub-network in the architecture (Nt in Figure 4). The
premise of the loss on comparing Rt to ot was to bias the encoder to continue to fully encode all
of the descriptive information of the observation through a lower-dimensional representation. The
premise of the loss on comparing Nt to ft was to bias the encoder and preliminary fully connected
layers to relate the parameters of action to their effects on the surface of the tub in image space. To
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Figure 5: Architecture of the actor network. The output of the final fully-connected layer undergoes a
sigmoid activation, and these activation values are converted into valid parameters of the scooping
action by treating the activations as ratios for linearly interpolating between the valid bounds of each
action parameter (at the layer labeled "Constraints" in the figure). Note that the bounds of the length
of the scoop are dependent on the y value since the length is bounded by the distance of the entry
point to the wall of the tub. The sigmoid output corresponding to the L parameter was thus used to
linearly interpolate between 0 and the distance between the scoop entry point and the wall of the tub
to which the scooping motion moves.

test sample efficiency, I trained each of these models on different-sized subsets of the data until their
errors predicting mt on a holdout validation set reached a minimum over 600 epochs, then computed
their test error on a random subset that had been held out for testing. Hyperparameters used for this
experiment are listed in Section A of the Appendix.

3.4 Learning Actor and Critic Models

Based on my findings that will be shown in Section 4.2 of training a predictive model, I decided not
to use auxiliary losses on my critic model. My critic model used the exact same architecture as the
predictive model shown in Figure 4, except with a final output computed as −|gt − pt| to directly
predict rt. I trained this critic model on 90% of my full dataset, ensuring the validation error on the
remaining 10% was satisfactory, for 200 epochs with an annealed learning rate. During each epoch
of training, I randomly sampled a new goal gt for each experience, according to the same distribution
as that specified by the task in Section 3.2.

This critic model was all that was required for the Cross Entropy Method (CEM), but for Actor-Critic,
I designed the actor network with the architecture shown in Figure 5. As suggested in [16], I used a
target network instance of the actor network to stabilize learning the policy during training, and it
was this target network which was used to select each action at test time.

Using the pretrained critic network and a newly initialized actor network, I prepopulated a replay
buffer with the entire dataset of random trials, with 4 replicas of each experience based on 4
different random samplings of gt and corresponding rt, an approach conceptually similar to Hindsight
Experience Replay. Before each test and trial, I pretrained the critic network and, as applicable,
the actor network for one epoch on this buffer. Since the critic model had already been pretrained
extensively and carefully, I used a very low learning rate for it during training on this buffer. After
pretraining, I tested two different approaches with respect to handling past experiences on both CEM
and Actor-Critic: retaining the replay buffer as normal or completely erasing the contents of the
replay buffer. The latter case could essentially be considered a time-based prioritized replay.

After pretraining and immediately before running the policy, I slightly increased the learning rate on
both the critic network and, if applicable, the actor network to allow each network to make faster
adjustments to changes in the environment. Before beginning each trial, I manually flattened the
surface of the pellets, then ran 100 episodes of each of these approaches (2 learning methods and 2
replay buffer approaches, permuting to 4 total experiments) without manually perturbing the contents
of the tub between episodes. Hyperparameters used throughout this entire process are listed in Section
B of the Appendix.
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4 Results

4.1 Random Dataset

Figure 6: Histogram of scooped masses from dataset of trials of random actions.

The histogram of the scooped masses mt from the ∼ 8000 sample training dataset is shown in Figure
6. The histogram reflects that random actions produce a very right-skewed distribution, whereas for
the actual task at test time, desired mass gt is sampled uniformly randomly. Thus, the distribution
of training data is relatively suboptimal for learning how to scoop higher masses. Perhaps more
importantly, the distribution of observed height maps is also likely skewed within this dataset, which
seemed to have very adverse effects on the performance of the algorithms over time, as will be
detailed in Section 4.3.

4.2 Model Selection

Figure 7: Test prediction errors for the predictive model with different combinations of auxiliary
losses. Values are averaged over three trials.

The results of optimizing different auxiliary loss combinations jointly on my model predicting the
scooped mass given an observation and action are visualized in Figure 7. Contrary to what I expected,
jointly optimizing auxiliary losses showed no significant effect on the error of the data, neither in the
low data nor in the high data regimes. The performance of each model was well within a standard
deviation of the performance of each other model for each training set size. Since the auxiliary losses
only introduced more model complexity and more hyperparameters to tune (i.e., the coefficients on
the different losses in their weighted linear combination), I decided not to use them in my critic or
actor models for the remaining experiments. This may have been short-sighted though, as it later
seemed important that my models generalize well to new distributions of observations. In this model
selection experiment, my training, validation, and test sets were all drawn randomly from the same
distribution as the training data from random actions. To test the efficacy of the auxiliary tasks more
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rigorously, I should have experimented with training the models on the random data, then testing
the models on data from a different distribution of data, e.g. a dataset composed of the experiences
from following the policies I tested at test time. An even more ideal and rigorous approach than this
would be to merely test the performance improvements these auxiliary losses offer directly while
performing the task, but this would be unrealistically time-consuming to test online on the robot, as
any specific configuration of hyperparameters, etc., would take at least on the order of an hour to
test a single trial, let alone taking an average over multiple trials and/or experimenting with tuning
hyperparameters.

4.3 Reinforcement Learning Algorithms

Figure 8: Rewards through first 100 episodes of each algorithm. Values are averaged over 4 trials.

Since the goals were sampled uniformly randomly on a large interval per each episode, there was a
large variance in the performance of each algorithm at each episode, as can be seen in Figure 8. Note
that the performance of each algorithm generally tends to degrade from the initial epochs. This is
likely because flattening the surface of the pellets before beginning the 100 episodes made the task
less challenging for the initial episodes. However, as the policies progressed, the surface of the pellets
became much more irregular and therefore challenging to the algorithms.

Figure 9: Mean reward per episode of each algorithm within a 100 episode trial during the first and
last stages. Values are averaged over 4 trials. Note that all rewards are negative, so shorter bars reflect
better performance.

Each learning algorithm substantially outperformed a random policy. However, both replay buffer
variations of the Cross-Entropy Method generally outperformed both variations of my Actor-Critic
method. This is especially apparent in Figure 9. Erasing the replay buffer seemed to have no
significant effect on the performance of the CEM method. However, for the Actor-Critic method,
erasing the replay buffer before beginning the episodes created an interesting trend in performance
over time. Whereas the Actor-Critic with the full prefilled buffer performed significantly better at
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the outset of the 100 episodes, the Actor-Critic with the empty buffer performed significantly better
closer to the end of the 100 episodes.

Given that each algorithm used the same pretrained critic, it seems that there are at least two possible
underlying explanations for the significant gaps in performance. Since the surface of the pellets was
only flattened at the beginning of each trial, the structure of the surface changed throughout each trial.
The random policy used to generate the initial 8000 samples likely induced a particular distribution of
structures on the surface of the pellets. The skew of the distribution of masses in Figure 6 may provide
some indirect evidence of this. However, the reinforcement learning algorithms tasked with scooping
a desired mass, sampled uniformly randomly over the interval of possible masses, likely each induced
different distributions of structures than that induced by the random policy. Thus, there are at least
two possible reasons one policy could perform better than another at different time windows. First,
the policy could induce a distribution of height maps that is more similar to or generalizable from
the distribution of height maps from the random policy. And second, the policy may be more agile
at adapting to the new distribution it has induced, perhaps reflecting that it is better at adapting to
new distributions in general. Though I would be tempted to conclude that erasing the replay buffer
and only training on new experiences at test time allowed Actor-Critic to adapt more quickly to the
changing environment, especially given the difference in performance for the first 10 episodes, it may
simply be that the Actor-Critic with the erased buffer just induced a relatively easier distribution of
structure during the 100 episodes. It is thus not entirely clear which of these two possibilities was
responsible for performance differences, or if it was some combination of both. Further experiments
would need to be conducted to isolate each of these two possibilities, e.g., manually structuring the
surface of the pellets in a fixed novel shape before testing each policy.

Regardless of the differences in performance between the different learning algorithms, the drop in
performance of each over time does not reflect well upon the critic network on which they are all based.
One underlying hypothesis of this experiment was that the deep neural network would effectively
be able to somewhat capture relationships from the underlying dynamics of the granular material.
The results suggest, however, that the critic network was not especially robust at generalizing to new
distributions that were, at least visually, only slightly diverged from the distribution of observations on
which it had been trained. Therefore, it seems reckless to conclude that the deep network proficiently
captured the underlying dynamics relationships of granular materials from its training data.

5 Conclusion

In this paper, I tested 4 different deep reinforcement learning policies for their competence on the task
of a robot scooping a specified mass of a granular material. After collecting a dataset of the results
of random actions to pretrain each of these policies, I evaluated each policy on the environment
to compare their performances over time. The results show that the policies perform significantly
better than the random policy on which they were trained, but interesting variations in performance
arose as each policy was left to manipulate the environment over multiple episodes. The results
suggest that, within the length of the trials I tested, the Cross Entropy Method achieved superior
performance overall, with the Actor-Critic performing better initially when using a prepopulated
replay buffer and performing better in later episodes when using a fresh replay buffer of only test-time
experiences. Perhaps further tuning of hyperparameters of each method could have negated some of
these differences in performance, and running longer trials could have confirmed or denied suspicions
as to which learning algorithm adapted better over time. Thus, more experiments would need to
be conducted to isolate specific explanations of differences in performance. Overall however, the
results show the promise of using deep reinforcement learning in the rather challenging domain of
manipulating deformable granular materials.
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Appendix A Model Selection Hyperparameters

Learning rate 5× 10−4

Learning rate decay coefficient 0.995 per epoch
Training epochs 600
Training dropout probability 0.5
Coefficient of MSE mass prediction loss 1
Coefficient of MSE observation reconstruction loss 1× 103

Coefficient of MSE next observation reconstruction loss 1× 104

Mini-batch size 32
Validation set size 700
Test set size 900

Appendix B RL Hyperparameters

Pretraining Critic on Full Dataset
Learning rate 2× 10−4

Learning rate decay coefficient 0.97 per epoch
Training epochs 200
Training dropout probability 0.5
Coefficient of MSE reward prediction loss 1
Coefficient of MSE observation reconstruction loss 0
Coefficient of MSE next observation reconstruction loss 0
Mini-batch size 32

Pretraining Critic on Replay Buffer
Learning rate < 2× 10−9

Training epochs 1
Training dropout probability 0.5
Coefficient of MSE reward prediction loss 1
Coefficient of MSE observation reconstruction loss 0
Coefficient of MSE next observation reconstruction loss 0
Mini-batch size 32

Pretraining Actor on Replay Buffer
Learning rate 1× 10−6

Training epochs 1
Training dropout probability 0.5
Target network coefficient τ 0.1
Mini-batch size 32

Critic Training During Performing the Task
Learning rate 5× 10−5

Training dropout probability 0.5
Coefficient of MSE reward prediction loss 1
Coefficient of MSE observation reconstruction loss 0
Coefficient of MSE next observation reconstruction loss 0
Mini-batch size 32

Actor Training During Performing the Task
Learning rate 5× 10−5

Training dropout probability 0.5
Target network coefficient τ 0.1
Mini-batch size 32
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